
La mayoría de los movimientos «voluntarios» puestos en marcha por la corteza cerebral se realizan cuando esta estructura activa «patrones» de funcionamiento almacenados en las regiones inferiores del encéfalo: la médula, el tronco del encéfalo, los ganglios basales y el cerebelo. Estos centros inferiores, a su vez, mandan señales de control específicas hacia los músculos.
CORTEZA MOTORA Y FASCICULO CORTICOESPINAL

Por delante del surco cortical central, ocupando aproximadamente el tercio posterior de los lóbulos frontales, está la corteza motora. Por detrás queda la corteza somatosensitiva, que le suministra gran parte de las señales empleadas para iniciar las actividades motoras.
La corteza motora se divide en tres subáreas, cada una de las cuales posee su propia representación topográfica para los grupos musculares y las funciones motoras específicas:
La corteza motora primaria, ocupa la primera circunvolución de los lóbulos frontales por delante del surco central o cisura de Rolando. Comienza desde su zona más lateral situada en el surco lateral o cisura de Silvio, se extiende hacia arriba hasta la porción más superior del cerebro y a continuación desciende por la profundidad de la cisura longitudinal.
El área premotora, queda a una distancia de 1 a 3 cm por delante de la corteza motora primaria. Se extiende hacia abajo en dirección al surco lateral y hacia arriba en dirección a la cisura longitudinal, donde limita con el área motora suplementaria, que cumple unas funciones análogas a las del área premotora. La organización topográfica de la corteza premotora es a grandes rasgos la misma que la de la corteza motora primaria, con las zonas para la boca y la cara en una situación más lateral; a medida que se asciende, aparecen las áreas para las manos, los brazos, el tronco y las piernas. Las señales nerviosas generadas en el área premotora dan lugar a «patrones» de movimiento mucho más complejos que los patrones puntuales originados en la corteza motora primaria. En la corteza premotora posterior, dicha imagen excita cada patrón sucesivo de actividad muscular necesario para su realización. Esta porción posterior de la corteza premotora envía sus impulsos directamente a la corteza motora primaria para activar músculos específicos o, lo más frecuente, a través de los ganglios basales y el tálamo hasta regresar a la corteza motora primaria.
El área motora suplementaria posee otra organización topográfica para controlar la función motora. Sobre todo ocupa la cisura longitudinal, pero se extiende unos pocos centímetros por la corteza frontal superior. Las contracciones suscitadas al estimular esta zona suelen ser bilaterales en vez de unilaterales. Por ejemplo, su activación a menudo desemboca en unos movimientos de prensión bilaterales de ambas manos a la vez; estos movimientos quizá constituyan un rudimento de las funciones de la mano necesarias para trepar. En general, este área funciona en consonancia con el
área premotora para aportar los movimientos posturales de todo el cuerpo, los movimientos de fijación de los diversos segmentos corporales, los movimientos posturales de la cabeza y de los ojos, etc., como base para el control motor más fino de los brazos y de las manos a cargo del área premotora y de la corteza motora primaria.
Las señales motoras se transmiten directamente desde la corteza hasta la médula espinal a través del fascículo corticoespinal e indirectamente por múltiples vías accesorias en las que intervienen los ganglios basales, el cerebelo y diversos núcleos del tronco del encéfalo. En general, las vías directas
están más dedicadas a los movimientos detallados y bien diferenciados, especialmente en los segmentos distales de las extremidades, sobre todo en las manos y los dedos.
FASCICULO CORTICOESPINAL (VÍA PIRAMIDAL)

El 30% más o menos de este fascículo nace en la corteza motora primaria, otro 30% lo hace en las áreas motoras premotora y motora suplementaria, y el 40% en las áreas somatosensitivas por detrás del surco central.
Tras salir de la corteza, atraviesa el brazo posterior de la cápsula interna y después desciende por el tronco del encéfalo, formando las pirámides del bulbo raquídeo.
La mayoría de las fibras piramidales cruzan a continuación hacia el lado opuesto en la parte inferior del bulbo y descienden por los fascículos corticoespinales laterales de la médula, para acabar finalizando sobre todo en las interneuronas de las regiones intermedias de la sustancia gris medular.
Algunas fibras no cruzan hacia el lado opuesto en el bulbo raquídeo, sino que descienden por el mismo lado de la médula constituyendo los fascículos corticoespinales ventrales. Muchas de estas fibras, si no la mayoría, al final acaban cruzando al lado contrario de la médula a la altura del cuello o de la región torácica superior. Estas fibras pueden estar dedicadas al control de los movimientos posturales bilaterales por parte de la corteza motora suplementaria.
EXCITACION DE LAS AREAS PREMOTORAS DEL CONTROL MOTOR MEDULARES POR LA CORTEZA PRIMARIA Y EL NÚCLEO ROJO
Las células de la corteza motora también están organizadas en columnas verticales con un diámetro de una fracción de milímetro, reuniendo miles de neuronas en cada una. Cualquier columna celular funciona como una unidad, que normalmente estimula un grupo de músculos sinérgicos, pero a veces no activa más que un solo músculo. Asimismo, cada columna posee seis capas diferentes de células, lo que se mantiene constante prácticamente por la corteza cerebral en su integridad. Todas las células piramidales que dan origen a las fibras corticoespinales se hallan en la quinta capa celular contando desde la superficie cortical. Las señales recibidas entran en su conjunto a través de las capas 2 a 4, y la sexta capa da origen sobre todo a las fibras que comunican con otras regiones de la corteza cerebral.
Las neuronas pertenecientes a cada columna operan como un sistema de procesamiento integrado, que maneja información procedente de múltiples fuentes para determinar la respuesta emitida por la columna. Además, cada columna puede funcionar como un sistema amplificador para estimular una gran cantidad de fibras piramidales dirigidas al mismo músculo o a los músculos sinérgicos en un momento dado. Esta capacidad es importante, porque la activación de una sola célula piramidal rara vez es capaz de excitar un músculo. Normalmente, hace falta la excitación de 50 a 100 simultáneamente o en una rápida sucesión para lograr la contracción muscular definitiva.
ESTIMULACION DE MOTONEURONAS MEDULARES

En la intumescencia cervical de la médula donde están representados las manos y los dedos, una gran cantidad de fibras corticoespinales y rubroespinales también acaban directamente sobre las motoneuronas anteriores, lo que supone una vía directa desde el encéfalo para activar la contracción muscular. Este mecanismo encaja con el hecho de que el grado de representación en la corteza motora primaria sea altísimo para el control fino de las acciones de la mano, el pulgar y el resto de los dedos.
CONTROL DE LAS FUNCIONES MOTORAS POR EL TRONCO DEL ENCÉFALO

El tronco del encéfalo consta del bulbo raquídeo, la protuberancia y el mesencéfalo. En cierto sentido, constituye una prolongación de la médula espinal que asciende hacia la cavidad craneal, porque contiene núcleos sensitivos y motores capaces de cumplir funciones de este tipo para las regiones de la cara y la cabeza del mismo modo que la médula espinal desempeña estas funciones desde el cuello hacia abajo. Sin embargo, en otro sentido, el tronco del encéfalo es dueño de sí mismo, porque se encarga de muchas funciones de control especiales, como las siguientes:
- Control de la respiración.
- Control del aparato cardiovascular.
- Control parcial del funcionamiento digestivo.
- Control de muchos movimientos estereotipados del cuerpo.
- Control del equilibrio.
- Control de los movimientos oculares.
Finalmente, el tronco del encéfalo sirve como estación de relevo para las «señales de mando» procedentes de los centros nerviosos superiores. En los próximos apartados explicamos laimportancia de esta estructura para el control del equilibrio y el movimiento del cuerpo en su conjunto. En el cumplimiento de estos objetivos tienen una relevancia especial los núcleos reticularesy los núcleos vestibulares del tronco del encéfalo.
SENSACIONES VESTIBULARES Y MANTENIMIENTO DEL EQUILIBRIO

El aparato vestibular, es el órgano sensitivo encargado de detectar la sensación del equilibrio. Se encuentra encerrado en un sistema de tubos y cavidades óseas situado en la porción petrosa del hueso temporal, llamado laberinto óseo. Dentro de este sistema están los tubos y cavidades membranosas denominados laberinto membranoso. El laberinto membranoso es el componente funcional del aparato vestibular. está compuesta básicamente por la cóclea (conducto coclear); tres conductos semicirculares y dos grandes cavidades, el utrículo y el sáculo. La cóclea es el principal órgano sensitivo para la audición tiene poco que ver con el equilibrio. Sin embargo, los conductos semicirculares, el utrículo y el sáculo son elementos integrantes del mecanismo del equilibrio.
La mácula del utrículo queda básicamente en el plano horizontal de la superficie inferior del utrículo y cumple una función importante para determinar la orientación de la cabeza cuando se encuentra en posición vertical. Por el contrario, en líneas generales la mácula del sáculo está situada en un plano vertical e informa de la orientación de la cabeza cuando la persona está tumbada.
Los otolitos calcificados tienen una densidad específica dos o tres veces superior a la que posee el líquido y los tejidos que los rodean. Su peso dobla los cilios según la dirección de la fuerza de la gravedad.
Cada célula pilosa tiene de 50 a 70 pequeños cilios llamados estereocilios, más un cilio grande, el cinetocilio. Debido a la presencia de estas fijaciones, cuando los estereocilios y el cinetocilio se doblan ensentido hacia este último, las conexiones filamentosas tiran de forma secuencial de los estereocilios,
arrastrándolos hacia fuera desde el cuerpo de la célula. Este movimiento abre varios cientos de canales para el paso de líquidos en la membrana neuronal que rodea a las bases de los estereocilios y dichos canales son capaces de conducir una gran cantidad de iones positivos. Por tanto, se vierten cationes dentro de la célula desde el líquido endolinfático a su alrededor, lo que provoca la despolarización de la membrana receptora.
Los tres conductos semicirculares de cada aparato vestibular, denominados conductos semicirculares anterior, posterior y lateral (horizontal) mantienen una disposición perpendicular entre sí de manera que representan los tres planos del espacio. Cuando la cabeza se inclina hacia delante unos 30°, los conductos semicirculares laterales quedan aproximadamente horizontales con respecto a la superficie del suelo; los anteriores están en un plano vertical que se proyecta hacia delante y 45° hacia fuera, mientras que los posteriores están en planos verticales que se proyectan hacia atrás y 45° hacia fuera. Cada conducto semicircular posee una dilatación en uno de sus extremos llamada ampolla y tanto los conductos como la ampolla están llenos de un líquido denominado endolinfa. El flujo de este líquido a través de uno de los conductos y de su ampolla excita el órgano sensitivo.