
El sistema nervioso autónomo es la porción del sistema nervioso que controla la mayoría de las funciones viscerales del cuerpo. Este componente interviene en la regulación de la presión arterial, la motilidad digestiva, las secreciones gastrointestinales, el vaciamiento de la vejiga urinaria, la sudoración, la temperatura corporal y otras muchas actividades. Algunas de ellas se encuentran casi del todo bajo su dominio en algunos casos y solo parcialmente en otros. Una de las características más sorprendentes del sistema nervioso autónomo es la rapidez y la intensidad con la que puede variar las funciones viscerales.
ORGANIZACION GENERAL DEL SISTEMA NERVIOSO AUTÓNOMO

El sistema nervioso autónomo se activa sobre todo a partir de centros situados en la médula espinal, el tronco del encéfalo y el hipotálamo. Asimismo, ciertas porciones de la corteza cerebral, sobre todo de la corteza límbica, pueden transmitir señales hacia los centros inferiores e influir de este modo en el control autónomo.
El sistema nervioso autónomo también suele operar por medio de reflejos viscerales. Es decir, las señales sensitivas subconscientes procedentes de órganos viscerales pueden llegar a los ganglios autónomos, el tronco del encéfalo o el hipotálamo, y a continuación devolver unas respuestas reflejas subconscientes directamente a los órganos viscerales para controlar su actividad.
Las señales autónomas eferentes se transmiten hacia los diversos órganos del cuerpo a través de sus dos componentes principales, denominados sistema nervioso simpático y sistema nervioso parasimpático, cuyas características y funciones se describen en el siguiente apartado.
CARACTERÍSTICAS BÁSICAS DEL FUNCIONAMIENTO SIMPÁTICO Y PARASIMPÁTICO

Las fibras nerviosas simpáticas y parasimpáticas segregan básicamente una de las dos sustancias transmisoras de la sinapsis, acetilcolina o noradrenalina. Las fibras que liberan acetilcolina se llaman colinérgicas. Las que emiten noradrenalina se llaman adrenérgicas.
Todas las neuronas preganglionares son colinérgicas tanto en el sistema nervioso simpático como en el parasimpático. La acetilcolina o las sustancias semejantes, al aplicarlas a los ganglios, excitarán las neuronas posganglionares tanto simpáticas como parasimpáticas. Todas o casi todas las neuronas posganglionares del sistema parasimpático también son colinérgicas. En cambio, la mayoría de las neuronas posganglionares simpáticas son adrenérgicas. Sin embargo, las fibras nerviosas simpáticas posganglionares dirigidas a las glándulas sudoríparas y, tal vez, a un número muy escaso de vasos sanguíneos son colinérgicas.
Unas cuantas terminaciones nerviosas autónomas posganglionares, sobre todo las de los nervios parasimpáticos, son semejantes a las de la unión neuromuscular esquelética, pero mucho más pequeñas. Sin embargo, muchas de las fibras nerviosas parasimpáticas y casi todas las simpáticas se limitan meramente a rozar las células efectoras de los órganos inervados a su paso por ellos; o, en algunos casos, terminan en el tejido conjuntivo que ocupa un lugar adyacente a las células que vayan a ser activadas. En el punto donde estos filamentos tocan o pasan sobre las células estimuladas o en su proximidad suelen presentar unas dilataciones bulbosas llamadas varicosidades; es en estas varicosidades donde se sintetizan y almacenan las vesículas transmisoras de la acetilcolina o la noradrenalina. También en las varicosidades hay una gran cantidad de mitocondrias que proporcionan el trifosfato de adenosina necesario para activar la síntesis de acetilcolina y noradrenalina.
Cuando un potencial de acción se propaga hasta las fibras terminales, el proceso de despolarización aumenta la permeabilidad a los iones calcio en la membrana de la fibra, lo que permite la difusión de estos iones hacia las terminales o las varicosidades nerviosas. Los iones calcio a su vez hacen que las terminales o las varicosidades viertan su contenido al exterior. De este modo se segrega la sustancia transmisora.
Lo habitual es que la noradrenalina segregada directamente a un tejido se mantenga activa tan solo unos pocos segundos, lo que manifiesta que su recaptación y su difusión lejos de esta zona son rápidas. Sin embargo, la noradrenalina y la adrenalina liberadas a la sangre por la médula suprarrenal permanecen activas hasta que difunden hacia algún tejido, donde pueden resultar destruidas por la catecol-O-metiltransferasa; esta acción tiene lugar sobre todo en el hígado. Por tanto, cuando se segregan hacia la sangre, la noradrenalina y la adrenalina permanecen activas de 10 a 30 s; pero su funcionalidad disminuye hasta la extinción en uno o varios minutos.
La acetilcolina activa sobre todo dos tipos de receptores, que reciben la denominación de receptores muscarínicos y nicotínicos. La razón de estos nombres radica en que la muscarina, un producto tóxico de las setas, solo activa los receptores muscarínicos y no los nicotínicos, mientras que la nicotina solo activa los nicotínicos. La acetilcolina estimula ambos.

FUNCIÓN DE LA MÉDULA SUPRARRENAL
La estimulación de la médula suprarrenal por parte de los nervios simpáticos hace que se libere una gran cantidad de adrenalina y noradrenalina a la circulación sanguínea, y estas dos hormonas a su vezse transportan por la sangre hasta todos los tejidos del cuerpo. Como promedio, más o menos el 80% de la secreción corresponde a adrenalina y el 20% a noradrenalina, aunque sus proporciones relativas pueden cambiar considerablemente en diferentes condiciones fisiológicas.
La adrenalina y la noradrenalina circulantes ejercen casi las mismas acciones sobre los diversos órganos que las ocasionadas por la estimulación simpática directa, excepto que sus efectos duran de 5 a 10 veces más debido a que estas dos hormonas desaparecen de la sangre con lentitud en un plazo de
2 a 4 min.
La noradrenalina circulante produce la contracción de la mayoría de todos los vasos sanguíneosdel cuerpo; también aumenta la actividad cardíaca, inhibe el tubo digestivo, dilata las pupilas oculares, etc.
La adrenalina provoca casi los mismos efectos que la noradrenalina, pero sus acciones difieren en los siguientes aspectos. En primer lugar, debido a su acción estimuladora más acusada sobre los receptores β produce una mayor activación cardíaca que la noradrenalina. En segundo lugar, la adrenalina no causa más que una débil contracción de los vasos sanguíneos a nivel de los músculos, en comparación con la contracción mucho más potente a cargo de la noradrenalina. Dado que los vasos musculares representan un componente fundamental en el conjunto del cuerpo, esta diferencia posee una importancia especial debido a que la noradrenalina eleva mucho la resistencia periférica total y la presión arterial, mientras que la adrenalina sube la presión arterial en menor magnitud, pero
aumenta más el gasto cardíaco.
Una tercera diferencia entre las acciones de la adrenalina y la noradrenalina está relacionada con sus consecuencias sobre el metabolismo tisular. La adrenalina ejerce un efecto metabólico de 5 a 10 veces mayor que la noradrenalina. En realidad, su secreción por la médula suprarrenal muchas veces puede elevar el índice metabólico de todo el cuerpo hasta un 100% por encima de lo normal, lo que
incrementa así la actividad y la excitabilidad del organismo. También acelera las tasas de otros procesos metabólicos, como la glucogenólisis hepática y muscular, y la liberación de glucosa a la sangre.
ESTIMULACIÓN DE LOS ÓRGANOS AISLADOS EN CIERTOS CASOS Y ESTIMULACIÓN MASIVA EN OTROS POR PARTE DE LOS SISTEMAS SIMPÁTICO Y PARASIMPÁTICO.

En algunos casos, casi todos los componentes del sistema nervioso simpático descargan a la vez formando una unidad completa, fenómeno llamado descarga masiva. Esto suele suceder cuando se activa el hipotálamo ante situaciones de miedo o de temor, o ante un dolor intenso. El resultado consiste en una amplia reacción por todo el cuerpo, llamada respuesta de alarma o de estrés, que comentaremos con brevedad.
Las funciones de control que cumple el sistema parasimpático son a menudo muy específicas. Por ejemplo, los reflejos cardiovasculares parasimpáticos suelen actuar solo sobre el corazón para aumentar o disminuir la frecuencia de sus latidos. En este mismo sentido, otros reflejos parasimpáticos dan lugar especialmente a la secreción de las glándulas orales, y en unas circunstancias diferentes la secreción se produce básicamente en las glándulas gástricas. Finalmente, el reflejo de vaciamiento rectal no influye sobre otras partes del intestino de forma notable. Con todo, existe una frecuente asociación entre las funciones parasimpáticas muy afines. Por ejemplo, aunque la secreción salival pueda darse con independencia de la secreción gástrica, a menudo también suceden a la vez, y muchas veces hay que añadir la secreción pancreática al mismo tiempo. Igualmente, el reflejo de vaciamiento rectal suele desencadenar el reflejo correspondiente en la vejiga urinaria, lo que se traduce en el vaciamiento simultáneo de ambos órganos. A la inversa, el reflejo de vaciamiento de la vejiga puede servir para poner en marcha el vaciamiento rectal.