Principios físicos del intercambio gaseoso; difusión de oxígeno y dióxido de carbono a través de la membrana respiratoria

Intercambio gaseoso on Make a GIF

Después de que los alvéolos se hayan ventilado con aire limpio, la siguiente fase de la respiración es la difusión del oxígeno (O2) desde los alvéolos hacia la sangre pulmonar y la difusión del dióxido de carbono (CO2) en la dirección opuesta, desde la sangre a los alvéolos. El proceso de difusión es simplemente el movimiento aleatorio de moléculas en todas las direcciones a través de la membrana respiratoria y los líquidos adyacentes. Sin embargo, en fisiología respiratoria no solo interesa el mecanismo básico mediante el que se produce la difusión, sino también la velocidad a la que ocurre, que es un problema mucho más complejo, que precisa un conocimiento más profundo de la física de la difusión y del intercambio gaseoso.

Física de la difusión gaseosa y presiones parciales de gases
Base molecular de la difusión gaseosa

Efecto Humo GIF | Gfycat

Todos los gases importantes en fisiología respiratoria son moléculas simples que se mueven libremente entre sí por «difusión». Esto también se aplica a los gases que están disueltos en los líquidos y en los tejidos del cuerpo.
Para que se produzca la difusión debe haber una fuente de energía. Esta fuente procede del movimiento cinético de las propias partículas. Excepto a la temperatura del cero absoluto, todas las moléculas de toda la materia están experimentando movimiento de manera continua. En el caso de las moléculas libres que no están unidas físicamente a otras, esto significa un movimiento lineal a una velocidad elevada hasta que chocan contra otras moléculas. Después rebotan en direcciones nuevas y siguen en movimiento hasta que chocan de nuevo con otras moléculas. De esta forma, las moléculas se mueven de manera rápida y aleatoria entre sí.

Difusión neta de un gas en una dirección: efecto de un gradiente de concentración

Transporte pasivo

Si una cámara de gas o una solución tiene una concentración elevada de un gas particular en un extremo de la cámara y una concentración baja en el otro extremo, se producirá difusión neta del gas desde la zona de concentración elevada hacia la zona de concentración baja. La razón es evidente: hay muchas más moléculas en el extremo A de la cámara para difundir hacia el extremo B que moléculas para difundir en la dirección opuesta. Por tanto, las velocidades de difusión en cada una de las dos direcciones son diferentes proporcionalmente.

Presiones gaseosas en una mezcla de gases: «presiones parciales» de gases individuales

Parrilla extractora | Elica

La presión está producida por múltiples impactos de partículas en movimiento contra una superficie.
Por tanto, la presión de un gas que actúa sobre las superficies de las vías aéreas y de los alvéolos es proporcional a la suma de las fuerzas de los impactos de todas las moléculas de ese gas que chocan contra la superficie en cualquier momento dado. Esto significa que la presión es directamente proporcional a la concentración de las moléculas del gas.
En fisiología respiratoria se manejan muestras de gases mezclas de gases, principalmente oxígeno, nitrógeno y dióxido de carbono. La velocidad de difusión de cada uno de estos gases es directamente proporcional a la presión que genera ese gas solo, que se denomina presión parcial de ese gas. El concepto de presión parcial se puede explicar de la siguiente manera.

Considérese el aire, que tiene una composición aproximada del 79% de nitrógeno y el 21% de oxígeno. La presión total de esta mezcla al nivel del mar es en promedio de 760 mmHg. A partir de la descripción previa de la base molecular de la presión es evidente que cada uno de los gasescontribuye a la presión total en proporción directa a su concentración. Por tanto, el 79% de los 760 mmHg está producido por el nitrógeno (600 mmHg) y el 21% por el O2 (160 mmHg). Así, la «presión parcial» del nitrógeno en la mezcla es de 600 mmHg y la «presión parcial» del O2 es de 160 mmHg; la presión total es de 760 mmHg, la suma de las presiones parciales individuales. Las presiones parciales de los gases individuales en una mezcla se señalan por los símbolos Po2, Pco2, Pn2, Phe, etc.

Presiones de gases disueltos en agua y tejidos

Tejido Pabellon GIF - Find & Share on GIPHY

Los gases disueltos en agua o en los tejidos corporales también ejercen una presión, porque las moléculas de gas disuelto se mueven de manera aleatoria y tienen energía cinética. Además, cuando el gas disuelto en el líquido entra en contacto con una superficie, como la membrana de una célula, ejerce su propia presión parcial de la misma manera que un gas en la fase gaseosa. Las presiones parciales de diferentes gases disueltos se denominan de la misma manera que las presiones parciales en estado gaseoso, es decir, Po2, Pco2, Pn2, Phe, etc.

Factores que determinan la presión parcial de un gas disuelto en un líquido

Coca Cola Coke GIF - CocaCola Coke Cola - Descubre & Comparte GIFs

La presión parcial de un gas en una solución está determinada no solo por su concentración, sino también por el coeficiente de solubilidad del gas. Es decir, algunos tipos de moléculas, especialmente el CO2, son atraídas física o químicamente por las moléculas de agua, mientras que otros tipos de moléculas son repelidas. Cuando las moléculas son atraídas se pueden disolver muchas más sin generar un exceso de presión parcial en el interior de la solución. Por el contrario, en el caso de moléculas que son repelidas se generará una presión parcial elevada con menos moléculas disueltas.

Estas relaciones se expresan mediante la fórmula siguiente, que es la ley de Henry:

Presión parcial= Concentración de gas disuelto / coeficiente de solubilidad


Cuando la presión parcial se expresa en atmósferas (una presión de 1 atmósfera es equivalente a 760 mmHg) y la concentración se expresa en volumen de gas disuelto en cada volumen de agua, los coeficientes de solubilidad de gases respiratorios importantes a temperatura corporal son los siguientes:
Oxígeno 0,024
Dióxido de carbono 0,57
Monóxido de carbono 0,018
Nitrógeno 0,012
Helio 0,008
A partir de esta tabla se puede ver que el CO2 es más de 20 veces más soluble que el oxígeno. Por tanto, la presión parcial del CO2 (para una concentración dada) es menor de 1/20 de la que ejerce el O2.

Difusión de gases entre la fase gaseosa de los alvéolos y la fase disuelta de la sangre pulmonar

LA FUNCIÓN DE NUTRICIÓN: APARATO RESPIRATORIO - Pictoeduca

respiratorio alveolar tiende a hacer que las moléculas de ese gas se disuelvan en la sangre de los capilares alveolares. Por el contrario,
las moléculas del mismo gas que ya están disueltas en la sangre están rebotando de manera aleatoria en el líquido de la sangre, y algunas de estas moléculas que rebotan escapan de nuevo hacia los alvéolos. La velocidad a la que escapan es directamente proporcional a su presión parcial en la sangre.
Pero ¿en qué dirección se producirá la difusión neta del gas? La respuesta es que la difusión neta está determinada por la diferenciaentre las dos presiones parciales. Si la presión parcial es mayor en la fase gaseosa de los alvéolos, como ocurre normalmente en el caso del oxígeno, entonces más moléculas difundirán hacia la sangre que en la otra dirección. Por otro lado, si la presión parcial del gas es mayor en el estado disuelto en la sangre, como ocurre normalmente en el caso del CO2, la difusión neta se dirigirá hacia la fase gaseosa de los alvéolos.

Presión de vapor de agua

AhiVa! PequeNautas - Gifs animados, animaciones - Agua - Geisers

Cuando se inhala aire no humidificado hacia las vías aéreas, el agua se evapora inmediatamente desde las superficies de estas vías aéreas y humidifica el aire. Esto se debe al hecho de que las moléculas de agua, al igual que las moléculas de los diferentes gases disueltos, están escapando continuamente de la superficie del agua hacia la fase gaseosa. La presión parcial que ejercen las moléculas de agua para escapar a través de la superficie se denomina la presión de vapor del agua. A la temperatura corporal normal, 37 °C, esta presión de vapor es de 47 mmHg. Por tanto, una vez que la mezcla de gases se ha humidificado totalmente (es decir, una vez que está en «equilibrio» con el agua), la presión parcial del vapor de agua en la mezcla de gases es de 47 mmHg. Esta presión parcial, al igual que las demás presiones parciales, se denomina Ph2o.
La presión de vapor de agua depende totalmente de la temperatura del agua. Cuanto mayor sea la temperatura, mayor será la actividad cinética de las moléculas y, por tanto, mayor será la probabilidad de que las moléculas de agua escapen de la superficie del agua hacia la fase gaseosa.
Por ejemplo, la presión de vapor de agua a 0 °C es de 5 mmHg, y a 100 °C es de 760 mmHg. El valor más importante que se debe recordar es la presión de vapor de agua a temperatura corporal, 47 mmHg. Este valor aparece en muchos de nuestros análisis posteriores.

La diferencia de presión provoca difusión de gases a través de líquidos

Actividad 3

Del análisis previo es evidente que cuando la presión parcial de un gas es mayor en una zona que en otra zona, habrá una difusión neta desde la zona de presión elevada hacia la zona de presión baja.

La difusión neta del gas desde la zona de presión elevada hacia la zona de presión baja es igual al número de moléculas que rebotan en esta dirección anterógrada menos el número que rebota en la dirección contraria, que es proporcional a la diferencia de presiones parciales de gas entre las dos zonas, denominada simplemente diferencia de presión para producir la difusión.

Humidificación del aire en las vías aéreas

SUNSKY - Humidificador de linterna escénica rotativa de 2.5 vatios con luz  colorida, capacidad: 300 ml, DC 5V (Azul)

El aire atmosférico está compuesto casi totalmente por nitrógeno y oxígeno; normalmente apenas contiene CO2 y poco vapor de agua. Sin embargo, tan pronto como el aire atmosférico entra en las vías aéreas está expuesto a los líquidos que recubren las superficies respiratorias. Incluso antes de que el aire entre en los alvéolos, se humidifica casi totalmente.
La presión parcial de vapor de agua a una temperatura corporal normal de 37 °C es de 47 mmHg, que es, por tanto, la presión parcial de vapor de agua del aire alveolar. Como la presión total en los alvéolos no puede aumentar por encima de la presión atmosférica (760 mmHg a nivel del mar), este vapor de agua simplemente diluye todos los demás gases que están en el aire inspirado.

La humidificación del aire diluye la presión parcial de oxígeno al nivel del mar desde un promedio de 159 mmHg en el aire atmosférico a 149 mmHg en el aire humidificado, y diluye la presión parcial de nitrógeno desde 597 a 563 mmHg.

El aire alveolar se renueva lentamente por el aire atmosférico

Intercambio gaseos

En promedio la capacidad residual funcional de los pulmones (el volumen de aire que queda en los pulmones al final de una espiración normal) en un hombre mide aproximadamente 2.300 ml. Sin embargo, solo 350 ml de aire nuevo entran en los alvéolos en cada inspiración normal y se espira esta misma cantidad de aire alveolar. Por tanto, el volumen de aire alveolar que es sustituido por aire atmosférico nuevo en cada respiración es de solo 1/7 del total, de modo que son necesarias múltiples inspiraciones para intercambiar la mayor parte del aire alveolar.

En el primer alvéolo de la figura hay una cantidad excesiva de un gas en los alvéolos, pero obsérvese que incluso al final de 16 respiraciones todavía no se ha eliminado completamente el exceso de gas de los alvéolos.

La velocidad a la que se elimina normalmente el exceso de gas de los alvéolos, y que con una ventilación alveolar normal se elimina aproximadamente la mitad del gas en 17 s. Cuando la velocidad de ventilación alveolar de una persona es de solo la mitad de lo normal, se elimina la mitad del gas en 34 s, y cuando la velocidad de la ventilación es el doble de lo normal se elimina la mitad en aproximadamente 8 s.}

Importancia de la sustitución lenta del aire alveolar

Los perros huelen en estéreo

La sustitución lenta del aire alveolar tiene una importancia particular en la prevención de cambios súbitos de las concentraciones de gases en la sangre. Esto hace que el mecanismo de control respiratorio sea mucho más estable de lo que sería de otro modo, y ayuda a prevenir los aumentos y disminuciones excesivos de la oxigenación tisular, de la concentración tisular de CO2 y del pH tisular cuando se produce una interrupción temporal de la respiración.

Concentración y presión parcial de oxígeno en los alvéolos

Aang | Wiki | •Avatar• Amino

El oxígeno se absorbe continuamente desde los alvéolos hacia la sangre de los pulmones, y continuamente se respira O2 nuevo hacia los alvéolos desde la atmósfera. Cuanto más rápidamente se absorba el O2, menor será su concentración en los alvéolos; por el contrario, cuanto más rápidamente se inhale nuevo O2 hacia los alvéolos desde la atmósfera, mayor será su concentración.
Por tanto, la concentración de O2 en los alvéolos, y también su presión parcial, está controlada por: 1) la velocidad de absorción de O2 hacia la sangre, y 2) la velocidad de entrada de O2 nuevo a los pulmones por el proceso ventilatorio.

Si la persona respira gases que contienen presiones parciales de O2 mayores de 149 mmHg, la Po2 alveolar se puede acercar a estas mayores presiones a elevadas velocidades de ventilación.

El aire espirado es una combinación de aire del espacio muerto y
aire alveolar

GIF: Expulsando humo de colores (Gif #676)

La composición global del aire espirado está determinada por: 1) la cantidad del aire espirado que es aire del espacio muerto, y 2) la cantidad que es aire alveolar. La primera porción de este aire, el aire del espacio muerto de las vías aéreas respiratorias, es aire humidificado típico.

Después cada vez más aire alveolar se mezcla con el aire del espacio muerto hasta que finalmente se ha eliminado el aire del espacio muerto y solo se espira aire alveolar al final de la espiración. Por tanto, el método para obtener aire alveolar para su estudio es simplemente obtener una muestra de la última porción del aire espirado después de que una espiración forzada haya eliminado todo el aire del espacio muerto.

Difusión de gases a través de la membrana respiratoria

Órganos animales. Sistema respiratorio. Tráquea. Atlas de Histología  Vegetal y Animal

Unidad respiratoria

Ilustración de Ilustraciones Científicas De Anatomía Humana Tráquea y más  Vectores Libres de Derechos de Anatomía - iStock
SISTEMA RESPIRATORIO Apuntes

la unidad respiratoria (también denominada «lobulillo respiratorio»), que está formada por un bronquíolo respiratorio, los conductos alveolares, los atrios y los alvéolos. Hay
aproximadamente 300 millones de alvéolos en los dos pulmones, y cada alvéolo tiene un diámetro medio de aproximadamente 0,2 mm. Las paredes alveolares son muy delgadas y entre los alvéolos hay una red casi sólida de capilares interconectados. De hecho, debido a lo extenso del plexo capilar, se ha descrito que el flujo de sangre en la pared alveolar es una «lámina» de sangre que fluye. Así, es evidente que los gases alveolares están muy próximos a la sangre de los capilares pulmonares. Además, el intercambio gaseoso entre el aire alveolar y la sangre pulmonar se produce a través de las membranas de todas las porciones terminales de los pulmones, no solo en los alvéolos. Todas estas membranas se conocen de manera colectiva como la membrana respiratoria, también denominada membrana pulmonar.

Membrana respiratoria

Histologia Sistema Respitaorio: Alveolos

la ultraestructura de la membrana respiratoria dibujada en sección transversal a la izquierda y un eritrocito a la derecha. También muestra la difusión de oxígeno desde el alvéolo hacia el eritrocito y la difusión de CO2 en la dirección opuesta. Se pueden observar las siguientes capas de la membrana respiratoria:

  1. Una capa de líquido que contiene surfactante y que tapiza el alvéolo, lo que reduce la tensión superficial del líquido alveolar.
  2. El epitelio alveolar, que está formado por células epiteliales delgadas.
  3. Una membrana basal epitelial.
  4. Un espacio intersticial delgado entre el epitelio alveolar y la membrana capilar.
  5. Una membrana basal capilar que en muchos casos se fusiona con la membrana basal del epitelio alveolar.
  6. La membrana del endotelio capilar.

Factores que influyen en la velocidad de difusión gaseosa a través de la membrana respiratoria

Ejemplo Informe de Difusión

En relación con el análisis anterior de la difusión de los gases en agua, se pueden aplicar los mismos principios a la difusión de gases a través de la membrana respiratoria. Así, los factores que determinan la rapidez con la que un gas atraviesa la membrana son: 1) el grosor de la membrana; 2) el área superficial de la membrana; 3) el coeficiente de difusión del gas en la sustancia de la membrana, y 4) la diferencia de presión parcial del gas entre los dos lados de la membrana.
De manera ocasional se produce un aumento del grosor de la membrana respiratoria, por ejemplo, como consecuencia de la presencia de líquido de edema en el espacio intersticial de la membrana y en los alvéolos, de modo que los gases respiratorios deben difundir no solo a través de la membrana, sino también a través de este líquido. Además, algunas enfermedades pulmonares producen fibrosis de los pulmones, que puede aumentar el grosor de algunas partes de la membrana respiratoria. Dado que la velocidad de difusión a través de la membrana es inversamente proporcional al grosor de la membrana, cualquier factor que aumente el grosor a más de dos a tres veces el valor normal puede interferir de manera significativa con el intercambio respiratorio normal de gases. El área superficial de la membrana respiratoria se puede reducir mucho en muchas situaciones. Por ejemplo, la resección de todo un pulmón reduce el área superficial total a la mitad de lo normal. Además, en el enfisema confluyen muchos de los alvéolos, con desaparición de muchas paredes alveolares. Por tanto, las nuevas cavidades alveolares son mucho mayores que los alvéolos originales, aunque el área superficial total de la membrana respiratoria con frecuencia disminuye hasta cinco veces debido a la pérdida de las paredes alveolares. Cuando el área superficial total disminuye hasta aproximadamente un tercio a un cuarto de lo normal, se produce un deterioro sustancial del intercambio de gases a través de la membrana, incluso en situación de reposo, y durante los deportes de competición y otros ejercicios intensos incluso una mínima disminución del área superficial de los pulmones puede producir un deterioro grave del intercambio respiratorio de gases.
El coeficiente de difusión para la transferencia de cada uno de los gases a través de la membrana Respiratoria depende de la solubilidad del gas en la membrana e inversamente de la raíz cuadrada del peso molecular del gas. La velocidad de difusión en la membrana respiratoria es casi exactamente la misma que en el agua, por los motivos que se han explicado antes. Por tanto, para una diferencia de presión dada, el CO2 difunde aproximadamente 20 veces más rápidamente que el O2. El oxígeno difunde aproximadamente dos veces más rápidamente que el nitrógeno.

La diferencia de presión a través de la membrana respiratoria es la diferencia entre la presión parcial del gas en los alvéolos y la presión parcial del gas en la sangre capilar pulmonar. La presión parcial representa una medida del número total de moléculas de un gas particular que incide en una unidad de superficie de la superficie alveolar de la membrana por cada unidad de tiempo, y la presión del gas en la sangre representa el número de moléculas que intentarán escapar desde la sangre en la dirección opuesta. Por tanto, la diferencia entre estas dos presiones es una medida de la tendencia neta a que las moléculas del gas se muevan a través de la membrana.
Cuando la presión parcial de un gas en los alvéolos es mayor que la presión del gas en la sangre, como ocurre en el caso del O2, se produce difusión neta desde los alvéolos hacia la sangre; cuando la presión del gas en la sangre es mayor que la presión parcial en los alvéolos, como ocurre en el caso del CO2, se produce difusión neta desde la sangre hacia los alvéolos.

Capacidad de difusión de la membrana respiratoria

Difusión – La Químicaweb

Capacidad de difusión del oxígeno
En un hombre joven medio, la capacidad de difusión del O2 en condiciones de reposo es en promedio de 21 ml/min/mmHg. En términos funcionales, ¿qué significa esto? La diferencia media de presión de O2 a través de la membrana respiratoria durante la respiración tranquila normal es de aproximadamente 11 mmHg. La multiplicación de esta presión por la capacidad de difusión (11 × 21) da un total de aproximadamente 230 ml de oxígeno que difunden a través de la membrana respiratoria cada minuto, que es igual a la velocidad a la que el cuerpo en reposo utiliza el O2.
Aumento de la capacidad de difusión del oxígeno durante el ejercicio
Durante el ejercicio muy intenso u otras situaciones que aumentan mucho el flujo sanguíneo pulmonar y la ventilación alveolar, la capacidad de difusión del O2 aumenta en los hombres jóvenes hasta un máximo de aproximadamente 65 ml/min/mmHg, que es el triple de la capacidad de difusión en situación de reposo. Este aumento está producido por varios factores, entre los que se encuentran:
1) la apertura de muchos capilares pulmonares previamente cerrados o la dilatación adicional decapilares ya abiertos, aumentando de esta el área superficial de la sangre hacia la que puede difundir el O2, y 2) un mejor equilibrio entre la ventilación de los alvéolos y la perfusión de los capilares alveolares con sangre, denominado cociente de ventilación-perfusión, que se analiza más adelante en este mismo capítulo. Por tanto, durante el ejercicio la oxigenación de la sangre aumenta no solo por el aumento de la ventilación alveolar, sino también por una mayor capacidad de difusión de la membrana respiratoria para transportar el O2 hacia la sangre.

Capacidad de difusión del dióxido de carbono
Nunca se ha medido la capacidad de difusión del CO2 porque el CO2 difunde a través de la membrana respiratoria con tanta rapidez que la Pco2 media de la sangre pulmonar no es muy diferente de la Pco2 de los alvéolos (la diferencia media es menor de 1 mmHg). Con las técnicas disponibles actualmente, esta diferencia es demasiado pequeña como para poderla medir.
Sin embargo, las mediciones de la difusión de otros gases han mostrado que la capacidad de difusión varía directamente con el coeficiente de difusión del gas particular. Como el coeficiente de difusión del CO2 es algo mayor de 20 veces el del O2, cabe esperar que la capacidad de difusión del CO2 en reposo sea de aproximadamente 400 a 450 ml/min/mmHg y durante el esfuerzo de aproximadamente 1.200 a 1.300 ml/min/mmHg.

Deja un comentario

Diseña un sitio como este con WordPress.com
Comenzar