
La función de la circulación consiste en atender las necesidades del organismo: transportar nutrientes hacia los tejidos del organismo, transportar los productos de desecho, transportar las hormonas de una parte del organismo a otra y, en general, mantener un entorno apropiado en todos los líquidos tisulares del organismo para lograr la supervivencia y una funcionalidad óptima de las células. La velocidad del flujo sanguíneo en muchos de los tejidos se controla principalmente en respuesta a su necesidad de nutrientes. En algunos órganos, como los riñones, la circulación sirve para funciones adicionales.
El corazón y los vasos sanguíneos están controlados, a su vez, de forma que proporcionan el gasto cardíaco y la presión arterial necesarios para garantizar el flujo sanguíneo necesario.
Características físicas de la circulación

Está divida en circulación sistémica y circulación pulmonar. Como la circulación sistémica aporta el flujo sanguíneo a todos los tejidos del organismoexcepto los pulmones, también se conoce como circulación mayor o circulación periférica.
Componentes funcionales de la circulación

La función de las arterias consiste en transportar la sangre con una presión alta hacia los tejidos, motivo por el cual las arterias tienen unas paredes vasculares fuertes y unos flujos sanguíneos importantes con una velocidad alta.
Las arteriolas son las últimas ramas pequeñas del sistema arterial y actúan controlando los conductos a través de los cuales se libera la sangre en los capilares. Las arteriolas tienen paredes musculares fuertes que pueden cerrarlas por completo o que pueden, al relajarse, dilatar los vasos varias veces, con lo que pueden alterar mucho el flujo sanguíneo en cada lecho tisular en respuesta a sus necesidades. La función de los capilares consiste en el intercambio de líquidos, nutrientes, electrólitos, hormonas y otras sustancias en la sangre y en el líquido intersticial.
Las paredes del capilar son finas y tienen muchos poros capilares diminutos, que son permeables al agua y a otras moléculas pequeñas.
Las vénulas recogen la sangre de los capilares y después se reúnen gradualmente formando venas de tamaño progresivamente mayor.
Las venas funcionan como conductos para el transporte de sangre que vuelve desde las vénulas al corazón; igualmente importante es que sirven como una reserva importante de sangre extra. Como la presión del sistema venoso es muy baja, las paredes de las venas son finas. Aun así, tienen una fuerza muscular suficiente para contraerse o expandirse y, de esa forma, actuar como un reservorio controlable para la sangre extra, mucha o poca, dependiendo de las necesidades de la circulación.
Volúmenes de sangre en los distintos componentes de la circulación

El 84% de todo el volumen de sangre del organismo se encuentra en la circulación sistémica y el 16% en el corazón y los pulmones. Del 84% que está en la circulación sistémica, aproximadamente el 64% está en las venas, el 13% en las arterias y el 7% en las arteriolas y capilares sistémicos. El corazón contiene el 7% de la sangre, y los vasos pulmonares, el 9%.
Presiones en las distintas porciones de la circulación

Como el corazón bombea la sangre continuamente hacia la aorta, la presión media en este vaso es alta, con una media en torno a los 100 mmHg. Además, como el bombeo cardíaco es pulsátil, la presión arterial alterna entre una presión sistólica de 120 mmHg y una diastólica de 80 mmHg.
A medida que el flujo sanguíneo atraviesa la circulación sistémica, la presión media va cayendo progresivamente hasta llegar casi a 0 mmHg en el momento en el que alcanza la terminación de las venas cava superior e inferior, donde se vacía en la aurícula derecha del corazón.
La presión de los capilares sistémicos oscila desde 35 mmHg cerca de los extremos arteriolares hasta tan solo 10 mmHg cerca de los extremos venosos, pero la presión media «funcional» en la mayoría de los lechos vasculares es de 17 mmHg, aproximadamente, una presión suficientemente baja que permite pequeñas fugas de plasma a través de los poros diminutos de las paredes capilares, aunque los nutrientes pueden difundir fácilmente a través de los mismos poros hacia las células de los tejidos externos.
Principios básicos de la función circulatoria

Aunque la función circulatoria es muy compleja, hay tres principios básicos que subyacen en todas las funciones del sistema.
1. El flujo sanguíneo en la mayoría de los tejidos está controlado según la necesidad tisular. Cuando los tejidos son activos necesitan un aporte mucho mayor de nutrientes y, por tanto, un flujo sanguíneo mucho mayor que en reposo, en ocasiones hasta 20 o 30 veces el nivel de reposo, a pesar de que el corazón normalmente no puede aumentar su gasto cardíaco en más de 4-7 veces su gasto cardíaco por encima del nivel en reposo.
2. El gasto cardíaco es la suma de todos los flujos locales de los tejidos. Cuando el flujo sanguíneo atraviesa un tejido, inmediatamente vuelve al corazón a través de las venas y el corazón responde automáticamente a este aumento del flujo aferente de sangre bombeándolo inmediatamente hacia las arterias.
3. La regulación de la presión arterial es generalmente independiente del control del flujo sanguíneo local o del control del gasto cardíaco. El sistema circulatorio está dotado de un extenso sistema de control de la presión arterial.
Interrelaciones entre la presión, el flujo y la resistencia

El flujo sanguíneo que atraviesa un vaso sanguíneo está determinado por dos factores: 1) diferencia de presión de la sangre entre los dos extremos de un vaso, también denominado «gradiente depresión» en el vaso, que empuja la sangre a través del vaso, y 2) los impedimentos que el flujosanguíneo encuentra en el vaso, que se conoce como resistencia vascular. la diferencia de presión entre los dos extremos del vaso, y no la presión absoluta, la que determina la velocidad del flujo.
Flujo sanguíneo

El flujo sanguíneo es, sencillamente, la cantidad de sangre que atraviesa un punto dado de la circulación en un período de tiempo determinado. Normalmente se expresa en mililitros por minuto o litros por minuto, pero puede expresarse en mililitros por segundo o en cualquier otra unidad del flujo y de tiempo.
El flujo sanguíneo global de toda la circulación de un adulto en reposo es de unos 5.000 ml/min, cantidad que se considera igual al gasto cardíaco porque es la cantidad de sangre que bombea el corazón en la aorta en cada minuto.
Presión sanguínea
Unidades estándar de presión

La presión sanguínea se mide casi siempre en milímetros de mercurio (mmHg) porque el manómetro de mercurio se ha usado como patrón de referencia para medir la presión desde su invención en 1846 por Poiseuille. En realidad, la presión arterial mide la fuerza ejercida por la sangre contra una unidad de superficie de la pared del vaso. Cuando se dice que la pared de un vaso es de 50 mmHg, quiere decirse que la fuerza ejercida es suficiente para empujar una columna de mercurio contra la gravedad hasta una altura de 50 mm. Si la presión es de 100 mmHg, empujará la columna de mercurio hasta los 100 mm.
Resistencia al flujo sanguíneo
Unidades de resistencia

La resistencia es el impedimento al flujo sanguíneo en un vaso, pero no se puede medir por medios directos. Por el contrario, la resistencia debe calcularse a partir de las determinaciones del flujo sanguíneo y de la diferencia de presión entre dos puntos del vaso. Si la diferencia de presión entre los dos puntos es de 1 mmHg y el flujo es de 1 ml/s, se dice que la resistencia es de una unidad d resistencia periférica, abreviada habitualmente como PRU.
Efecto del hematocrito y de la viscosidad de la sangre sobre la resistencia vascular y el flujo sanguíneo

Obsérvese que otro de los factores importantes de la ley de Poiseuille es la viscosidad de la sangre. Cuanto mayor sea la viscosidad, menor será el flujo en un vaso si todos los demás factores se mantienen constantes. Además, la viscosidad de la sangre normal es tres veces mayor que la del agua.
Lo que hace tan visco sa a la sangre es principalmente, el gran número de eritrocitos suspendidos en la sangre, cada uno de los cuales ejerce un arrastre por fricción sobre las células adyacentes y contra la pared del vaso sanguíneo.
Efectos de la presión sobre la resistencia vascular y el flujo sanguíneo tisular
La «autorregulación» atenúa el efecto de la presión arterial en el flujo sanguíneo tisular
El incremento de la presión arterial debería provocar un incremento proporcional del flujo sanguíneo en los distintos tejidos del organismo, aunque el efecto de la presión arterial sobre el flujo sanguíneo en muchos tejidos suele ser bastante menor de lo que se podría esperar.
La razón de este incremento es que el aumento de la presión arterial no solo aumenta la fuerza que impulsa la sangre a través de los vasos, sino que también inicia incrementos compensatorios en la resistencia vascular en un tiempo de unos segundos a través de la activación de los mecanismos locales de control.
La capacidad de cada tejido de ajustar su resistencia vascular y mantener un flujo sanguíneo normal durante los cambios en la presión arterial entre aproximadamente 70 y 175 mmHg se denomina autorregulación del flujo sanguíneo.
En la mayoría de los tejidos, los cambios en el flujo sanguíneo raras veces duran más de unas horas incluso cuando aumenta la presión arterial o se mantienen niveles aumentados de vasoconstrictores.