Regulación nerviosa de la circulación y control rápido de la presión arterial

El sistema nervioso•°• | •Ciencia• Amino

Regulación nerviosa de la circulación

Neurona Jy R GIF - Neurona JyR Emocion - Discover & Share GIFs

ajuste del flujo sanguíneo en los tejidos y los órganos del cuerpo es principalmente una función de los mecanismos de control en los tejidos locales. El sistema nervioso controla la circulación casi totalmente a través del sistema nervioso autónomo.

Sistema nervioso autónomo

Top 30 Mejor Con Salud GIFs | Find the best GIF on Gfycat

Con diferencia, la parte más importante del sistema nervioso autónomo para la regulación de la circulación es el sistema nervioso simpático. No obstante, el sistema nervioso parasimpático contribuye de manera importante a la regulación de la función cardíaca, como se describe más adelante en este mismo capítulo.

Sistema nervioso simpático

Las fibras nerviosas vasomotoras salen de la médula espinal a través de los nervios de la columna torácica y de los primeros uno o dos nervios lumbares. A continuación, pasan inmediatamente hacia las cadenas simpáticas, cada una de las cuales recorre cada lado de la columna vertebral. Después, siguen dos rutas hacia la circulación: 1) a través de los nervios simpáticos específicos que inervan principalmente la vasculatura de las vísceras internas y del corazón y 2) entrando casi inmediatamente en las porciones periféricas de los nervios espinales que se distribuyen hacia la vasculatura de las zonas periféricas.

Sistema vasoconstrictor simpático y su control por el sistema nervioso central

ELABORACIÓN DE MODELO DE SISTEMA NERVIOSO CENTRAL Y PERIFÉRICO

Los nervios simpáticos transportan una enorme cantidad de fibras nerviosas vasoconstrictoras y solo algunas fibras vasodilatadoras. Las fibras vasoconstrictoras se distribuyen esencialmente hacia todos los segmentos de la circulación, pero más hacia algunos tejidos que otros. Este efecto vasoconstrictor simpático es especialmente potente en los riñones, intestinos, bazo y piel, pero lo es mucho menos en el músculo esquelético y el cerebro.

Centro vasomotor del cerebro y control del sistema vasoconstrictor

Algunos mitos sobre el cerebro humano - Periódico Distrito Villaverde

Situado bilateralmente en la sustancia reticular del bulbo y en el tercio inferior de la protuberancia, conforma una zona denominada centro vasomotor.

Este centro transmite los impulsos parasimpáticos a través de los nervios vagos hacia el corazón y transmite los
impulsos simpáticos a través de la médula espinal y los nervios simpáticos periféricos prácticamente hacia todas las arterias, arteriolas y venas del organismo.

Aunque la organización total del centro vasomotor aún no se conoce con detalle, en algunos experimentos ha sido posible identificar ciertas zonas importantes en este centro:

  1. Una zona vasoconstrictora situada bilateralmente en las porciones anterolaterales de la parte superior del bulbo. Las neuronas que se originan en esta zona distribuyen sus fibras a todos los niveles de la médula espinal, donde excitan las neuronas vasoconstrictoras preganglionares del sistema nervioso simpático.
  2. Una zona vasodilatadora situada bilateralmente en las porciones anterolaterales de la mitad inferior del bulbo. Las fibras de estas neuronas se proyectan hacia arriba, hacia la zona vasoconstrictora que acabamos de describir, e inhiben la actividad vasoconstrictora de esta zona, con lo que provocan vasodilatación.
  3. Una zona sensitiva situada bilateralmente en el núcleo del tracto solitario de las porciones posterolaterales del bulbo y parte inferior de la protuberancia.

Control de la presión arterial por los quimiorreceptores carotídeos y aórticos: efecto del bajo nivel de oxígeno sobre la presión arterial

Arterias subclavia y carótida común | Acland. Video Atlas De Anatomia Humana

Estrechamente asociado al control de los barorreceptores del sistema de presión actúa un reflejo de quimiorreceptores que funciona de una forma muy similar al reflejo de barorreceptores, excepto porque son los quimiorreceptores, y no los receptores de estiramiento, los que inician la respuesta. Los quimiorreceptores están formados por células quimiosensibles al bajo nivel de oxígeno, al exceso de dióxido de carbono y al exceso de iones hidrógeno. Se localizan en varios órganos quimiorreceptores pequeños, con un tamaño de unos 2 mm (dos cuerpos carotídeos, cada uno de los cuales se sitúa en la bifurcación de cada arteria carótida común, y habitualmente entre uno y tres cuerpos aórticos adyacentes a la aorta). Los quimiorreceptores excitan las fibras nerviosas que, junto a las fibras de los barorreceptores, llegan por los nervios de Hering y los nervios vagos hacia el centro vasomotor del tronco del encéfalo. Cada cuerpo carotídeo o aórtico esta irrigado por un flujo sanguíneo abundante a través de una arteria nutricia pequeña, por lo que los quimiorreceptores siempre están en estrecho contacto con la sangre arterial. Siempre que la presión arterial cae por debajo de un nivel crítico los quimiorreceptores se estimulan porque el descenso del flujo sanguíneo provoca la disminución del oxígeno y también la acumulación excesiva de dióxido de carbono e iones hidrógeno que no se eliminan por una sangre que fluye lentamente.

Respuesta isquémica del sistema nervioso central: control de la presión arterial por el centro vasomotor del cerebro en respuesta a un descenso del flujo sanguíneo cerebral

TALL0 CEREBRAL by vicoc894 on emaze

La mayor parte del control nervioso de la presión sanguínea se logra por los reflejos que se originan en los barorreceptores, los quimiorreceptores y los receptores de presión baja, todos ellos situados en la circulación periférica fuera del cerebro. No obstante, cuando el flujo sanguíneo que se dirige hacia el centro vasomotor en la parte inferior del tronco del encéfalo disminuye lo suficiente para provocar un defecto nutricional, es decir, para provocar la isquemia cerebral, las neuronas vasoconstrictoras y cardioaceleradoras del centro vasomotor responden directamente a la isquemia y se excitan con fuerza. Cuando se produce esta excitación, la presión arterial sistémica aumenta hasta los niveles máximos que pueda bombear el corazón. Se cree que este efecto se debe al fracaso de la sangre que fluye lentamente y no puede llevarse el dióxido de carbono del centro vasomotor del tronco del encéfalo. Con niveles bajos de flujo sanguíneo hacia el centro vasomotor, la concentración local de dióxido de carbono aumenta mucho y tiene un efecto muy potente para estimular las zonas de control vasomotor nervioso simpático en el bulbo raquídeo.
Es posible que haya otros factores, como la acumulación de ácido láctico y de otras sustancias ácidas en el centro vasomotor, que también contribuyen a la importante estimulación y elevación de la presión arterial. Esta elevación en respuesta a una isquemia cerebral se conoce como respuesta isquémica del SNC.
El efecto isquémico sobre la actividad vasomotora puede elevar drásticamente la presión arterial media, llegando incluso a los 250 mmHg durante hasta 10 min. El grado de vasoconstricción simpática provocado por la isquemia cerebral intensa a menudo es tan grande que algunos de los vasos periféricos se ocluyen total o casi totalmente. Por ejemplo, los riñones interrumpen totalmente su producción de orina por la constricción arteriolar renal en respuesta a la descarga simpática. Por tanto, la respuesta isquémica del SNC es uno de los activadores más potentes de todos los activadores del sistema vasoconstrictor simpático.

Ondas respiratorias en la presión arterial

Respiración pulmonar: características, proceso, fases - Lifeder en 2020 |  Sistema respiratorio, Respiratorio, Sistema respiratorio humano

Con cada ciclo de respiración la presión arterial aumenta y cae 4-6 mmHg en forma de oleadas, provocando las ondas respiratorias de la presión arterial. Las ondas son consecuencia de varios efectos, algunos de los cuales tienen un origen reflejo:

  1. Muchas de las «señales respiratorias» que surgen en el centro de la respiración del bulbo se «desbordan» hacia el centro vasomotor con cada ciclo respiratorio.
  2. Cada vez que una persona inspira la presión de la cavidad torácica se vuelve más negativa de lo habitual, provocando la expansión de los vasos sanguíneos torácicos y reduciendo, en consecuencia, la cantidad de sangre que vuelve hacia el corazón izquierdo y disminuyendo momentáneamente el}gasto cardíaco y la presión arterial.
  3. Los cambios de presión provocados en los vasos torácicos por la respiración excitan los} receptores de estiramiento vasculares y auriculares. Aunque es difícil analizar las relaciones exactas de todos estos factores al provocar las ondas de presión respiratorias, el resultado neto durante la respiración normal es un aumento de la presión arterial durante la parte precoz de la espiración y un descenso de la presión durante el resto del ciclo respiratorio. Durante la respiración profunda la presión sanguínea aumenta y disminuye hasta 20 mmHg con cada ciclo respiratorio.

Deja un comentario

Diseña un sitio como este con WordPress.com
Comenzar